Generalized Langevin dynamics of a nanoparticle using a finite element approach: thermostating with correlated noise.

نویسندگان

  • B Uma
  • T N Swaminathan
  • P S Ayyaswamy
  • D M Eckmann
  • R Radhakrishnan
چکیده

A direct numerical simulation (DNS) procedure is employed to study the thermal motion of a nanoparticle in an incompressible Newtonian stationary fluid medium with the generalized Langevin approach. We consider both the Markovian (white noise) and non-Markovian (Ornstein-Uhlenbeck noise and Mittag-Leffler noise) processes. Initial locations of the particle are at various distances from the bounding wall to delineate wall effects. At thermal equilibrium, the numerical results are validated by comparing the calculated translational and rotational temperatures of the particle with those obtained from the equipartition theorem. The nature of the hydrodynamic interactions is verified by comparing the velocity autocorrelation functions and mean square displacements with analytical results. Numerical predictions of wall interactions with the particle in terms of mean square displacements are compared with analytical results. In the non-Markovian Langevin approach, an appropriate choice of colored noise is required to satisfy the power-law decay in the velocity autocorrelation function at long times. The results obtained by using non-Markovian Mittag-Leffler noise simultaneously satisfy the equipartition theorem and the long-time behavior of the hydrodynamic correlations for a range of memory correlation times. The Ornstein-Uhlenbeck process does not provide the appropriate hydrodynamic correlations. Comparing our DNS results to the solution of an one-dimensional generalized Langevin equation, it is observed that where the thermostat adheres to the equipartition theorem, the characteristic memory time in the noise is consistent with the inherent time scale of the memory kernel. The performance of the thermostat with respect to equilibrium and dynamic properties for various noise schemes is discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Viscoelastic behavior of Silica nanoparticle/polyimide nanocomposites using finite element approach

A three-dimensional micromechanical finite element model is developed to study the viscoelastic behavior of the silica nanoparticle/polyimide nanocomposites. The representative volume element (RVE) of the model consists of three phases including silica nanoparticle, polyimide matrix and interphase which surrounds the nanoparticle. The interphase region is created due to the interaction between ...

متن کامل

Viscoelastic behavior of Silica nanoparticle/polyimide nanocomposites using finite element approach

A three-dimensional micromechanical finite element model is developed to study the viscoelastic behavior of the silica nanoparticle/polyimide nanocomposites. The representative volume element (RVE) of the model consists of three phases including silica nanoparticle, polyimide matrix and interphase which surrounds the nanoparticle. The interphase region is created due to the interaction between ...

متن کامل

The Effects of Different SDE Calculus on Dynamics of Nano-Aerosols Motion in Two Phase Flow Systems

Langevin equation for a nano-particle suspended in a laminar fluid flow was analytically studied. The Brownian motion generated from molecular bombardment was taken as a Wiener stochastic process and approximated by a Gaussian white noise. Euler-Maruyama method was used to solve the Langevin equation numerically. The accuracy of Brownian simulation was checked by performing a series of simulati...

متن کامل

Vibration Analysis of Circular Single-Layer Graphene Sheet Using Finite Element Method

Graphene sheets are combined of Honeycombs lattice carbon-carbon bonds which have high natural frequencies, high strength, and high conductivity. Due to important applications of the graphene sheets particularly at higher frequencies, the study of their dynamic behavior is important in this frequency range. From Molecular Dynamics (MD) point of view as the dimensions of graphene sheet incline, ...

متن کامل

Finite Element Simulation of Contact Mechanics of Cancer Cells in Manipulation Based on Atomic Force Microscopy

The theory of contact mechanics deals with stresses and deformations which arise when the surfaces of two solid bodies are brought into contact. In elastic deformation contact occurs over a finite area. A regular method for determining the dimensions of this area is Hertz Contact Model. Appearance of atomic force microscope results in introduction of Contact ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 135 11  شماره 

صفحات  -

تاریخ انتشار 2011